Acta Psychologica Sinica ›› 2022, Vol. 54 ›› Issue (4): 371-384.doi: 10.3724/SP.J.1041.2022.00371
• Reports of Empirical Studies • Previous Articles Next Articles
XIE Min1, LI Feng2, LUO Yuhan1, KE Li3, WANG Xia4, WANG Yun1()
Received:
2021-05-17
Published:
2022-04-25
Online:
2022-02-21
Contact:
WANG Yun
E-mail:wangyun@bnu.edu.cn
Supported by:
XIE Min, LI Feng, LUO Yuhan, KE Li, WANG Xia, WANG Yun. (2022). A developmental model of job burnout dimensions among primary school teachers: Evidence from structural equation model and cross-lagged panel network model. Acta Psychologica Sinica, 54(4), 371-384.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2022.00371
Dimension | M | SD | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
1 Emotional exhaustion T1 | 2.67 | 0.98 | 0.62** | 0.04* | 0.47** | 0.29** | 0.09** |
2 Depersonalization T1 | 1.79 | 0.66 | 0.16** | 0.31** | 0.40** | 0.20** | |
3 Reduced personal accomplishment T1 | 2.50 | 0.99 | 0.04* | 0.12** | 0.25** | ||
4 Emotional exhaustion T2 | 2.47 | 0.93 | 0.67** | 0.14** | |||
5 Depersonalization T2 | 1.78 | 0.72 | 0.31** | ||||
6 Reduced personal accomplishment T2 | 2.22 | 0.84 |
Table 1 Mean, standard deviation and correlation coefficient of three dimensions in two tests
Dimension | M | SD | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
1 Emotional exhaustion T1 | 2.67 | 0.98 | 0.62** | 0.04* | 0.47** | 0.29** | 0.09** |
2 Depersonalization T1 | 1.79 | 0.66 | 0.16** | 0.31** | 0.40** | 0.20** | |
3 Reduced personal accomplishment T1 | 2.50 | 0.99 | 0.04* | 0.12** | 0.25** | ||
4 Emotional exhaustion T2 | 2.47 | 0.93 | 0.67** | 0.14** | |||
5 Depersonalization T2 | 1.78 | 0.72 | 0.31** | ||||
6 Reduced personal accomplishment T2 | 2.22 | 0.84 |
Model | χ2 | df | RMSEA | SRMR | CFI | TLI | AIC | aBIC |
---|---|---|---|---|---|---|---|---|
Basic model | 160.63 | 6 | 0.08 | 0.05 | 0.96 | 0.93 | 24076.50 | 24113.40 |
Golembiewski ( | 49.45 | 4 | 0.05 | 0.03 | 0.99 | 0.97 | 23969.32 | 24012.36 |
Leiter & Maslach ( | 25.35 | 4 | 0.04 | 0.02 | 0.99 | 0.98 | 23945.22 | 23988.27 |
Lee & Ashforth ( | 99.28 | 4 | 0.08 | 0.03 | 0.98 | 0.93 | 24019.15 | 24062.19 |
van Dierendonck ( | 145.37 | 4 | 0.09 | 0.05 | 0.97 | 0.90 | 24065.24 | 24108.29 |
Taris et al. ( | 22.97 | 3 | 0.04 | 0.02 | 0.99 | 0.98 | 23944.83 | 23990.96 |
Adjusted Model 1 | 0.61 | 2 | 0.00 | 0.00 | 1 | 1 | 23924.48 | 23973.68 |
Adjusted Model 2 | 51.24 | 5 | 0.05 | 0.03 | 0.99 | 0.97 | 23969.11 | 24009.08 |
Table 2 Fitting index of each comparison model when dimension is taken as observed variable
Model | χ2 | df | RMSEA | SRMR | CFI | TLI | AIC | aBIC |
---|---|---|---|---|---|---|---|---|
Basic model | 160.63 | 6 | 0.08 | 0.05 | 0.96 | 0.93 | 24076.50 | 24113.40 |
Golembiewski ( | 49.45 | 4 | 0.05 | 0.03 | 0.99 | 0.97 | 23969.32 | 24012.36 |
Leiter & Maslach ( | 25.35 | 4 | 0.04 | 0.02 | 0.99 | 0.98 | 23945.22 | 23988.27 |
Lee & Ashforth ( | 99.28 | 4 | 0.08 | 0.03 | 0.98 | 0.93 | 24019.15 | 24062.19 |
van Dierendonck ( | 145.37 | 4 | 0.09 | 0.05 | 0.97 | 0.90 | 24065.24 | 24108.29 |
Taris et al. ( | 22.97 | 3 | 0.04 | 0.02 | 0.99 | 0.98 | 23944.83 | 23990.96 |
Adjusted Model 1 | 0.61 | 2 | 0.00 | 0.00 | 1 | 1 | 23924.48 | 23973.68 |
Adjusted Model 2 | 51.24 | 5 | 0.05 | 0.03 | 0.99 | 0.97 | 23969.11 | 24009.08 |
Model | Path | b | SE | t | β | r |
---|---|---|---|---|---|---|
Golembiewski ( | ee1→ee2 | 0.40 | 0.01 | 36.82 | 0.44 | 0.49 |
pa1→ee2 | 0.01 | 0.01 | 1.40 | 0.01 | 0.06 | |
dp1→dp2 | 0.41 | 0.01 | 29.00 | 0.38 | 0.43 | |
dp1→pa2 | 0.21 | 0.02 | 10.45 | 0.16 | 0.21 | |
pa1→pa2 | 0.18 | 0.01 | 13.77 | 0.21 | 0.26 | |
Leiter & Maslach ( | ee1→ee2 | 0.44 | 0.01 | 34.00 | 0.44 | 0.49 |
ee1→dp2 | 0.06 | 0.01 | 5.17 | 0.06 | 0.11 | |
dp1→dp2 | 0.36 | 0.0 | 24.33 | 0.36 | 0.41 | |
dp1→pa2 | 0.21 | 0.02 | 10.65 | 0.21 | 0.26 | |
pa1→pa2 | 0.18 | 0.01 | 13.61 | 0.18 | 0.23 | |
Taris et al. ( | ee1→ee2 | 0.42 | 0.02 | 25.00 | 0.45 | 0.50 |
dp1→ee2 | 0.04 | 0.03 | 1.50 | 0.03 | 0.08 | |
ee1→dp2 | 0.05 | 0.01 | 4.15 | 0.07 | 0.12 | |
dp1→dp2 | 0.38 | 0.02 | 19.25 | 0.35 | 0.40 | |
dp1→pa2 | 0.21 | 0.02 | 10.75 | 0.17 | 0.22 | |
pa1→pa2 | 0.18 | 0.01 | 13.69 | 0.21 | 0.26 | |
Adjusted Model 1 | ee1→ee2 | 0.44 | 0.01 | 34.08 | 0.47 | 0.52 |
pa1→ee2 | 0.05 | 0.01 | 3.92 | 0.05 | 0.10 | |
ee1→dp2 | 0.07 | 0.01 | 5.75 | 0.09 | 0.14 | |
dp1→dp2 | 0.35 | 0.02 | 22.06 | 0.33 | 0.38 | |
pa1→dp2 | 0.05 | 0.01 | 4.82 | 0.07 | 0.12 | |
dp1→pa2 | 0.21 | 0.02 | 10.55 | 0.16 | 0.21 | |
pa1→pa2 | 0.19 | 0.01 | 14.77 | 0.22 | 0.28 | |
Adjusted Model 2 | ee1→ee2 | 0.40 | 0.01 | 36.73 | 0.43 | 0.48 |
dp1→dp2 | 0.40 | 0.01 | 31.08 | 0.38 | 0.43 | |
dp1→pa2 | 0.21 | 0.02 | 10.45 | 0.16 | 0.21 | |
pa1→pa2 | 0.18 | 0.01 | 13.85 | 0.21 | 0.26 |
Table 3 Regression coefficients and effect sizes of five models with dimensions as observed variables
Model | Path | b | SE | t | β | r |
---|---|---|---|---|---|---|
Golembiewski ( | ee1→ee2 | 0.40 | 0.01 | 36.82 | 0.44 | 0.49 |
pa1→ee2 | 0.01 | 0.01 | 1.40 | 0.01 | 0.06 | |
dp1→dp2 | 0.41 | 0.01 | 29.00 | 0.38 | 0.43 | |
dp1→pa2 | 0.21 | 0.02 | 10.45 | 0.16 | 0.21 | |
pa1→pa2 | 0.18 | 0.01 | 13.77 | 0.21 | 0.26 | |
Leiter & Maslach ( | ee1→ee2 | 0.44 | 0.01 | 34.00 | 0.44 | 0.49 |
ee1→dp2 | 0.06 | 0.01 | 5.17 | 0.06 | 0.11 | |
dp1→dp2 | 0.36 | 0.0 | 24.33 | 0.36 | 0.41 | |
dp1→pa2 | 0.21 | 0.02 | 10.65 | 0.21 | 0.26 | |
pa1→pa2 | 0.18 | 0.01 | 13.61 | 0.18 | 0.23 | |
Taris et al. ( | ee1→ee2 | 0.42 | 0.02 | 25.00 | 0.45 | 0.50 |
dp1→ee2 | 0.04 | 0.03 | 1.50 | 0.03 | 0.08 | |
ee1→dp2 | 0.05 | 0.01 | 4.15 | 0.07 | 0.12 | |
dp1→dp2 | 0.38 | 0.02 | 19.25 | 0.35 | 0.40 | |
dp1→pa2 | 0.21 | 0.02 | 10.75 | 0.17 | 0.22 | |
pa1→pa2 | 0.18 | 0.01 | 13.69 | 0.21 | 0.26 | |
Adjusted Model 1 | ee1→ee2 | 0.44 | 0.01 | 34.08 | 0.47 | 0.52 |
pa1→ee2 | 0.05 | 0.01 | 3.92 | 0.05 | 0.10 | |
ee1→dp2 | 0.07 | 0.01 | 5.75 | 0.09 | 0.14 | |
dp1→dp2 | 0.35 | 0.02 | 22.06 | 0.33 | 0.38 | |
pa1→dp2 | 0.05 | 0.01 | 4.82 | 0.07 | 0.12 | |
dp1→pa2 | 0.21 | 0.02 | 10.55 | 0.16 | 0.21 | |
pa1→pa2 | 0.19 | 0.01 | 14.77 | 0.22 | 0.28 | |
Adjusted Model 2 | ee1→ee2 | 0.40 | 0.01 | 36.73 | 0.43 | 0.48 |
dp1→dp2 | 0.40 | 0.01 | 31.08 | 0.38 | 0.43 | |
dp1→pa2 | 0.21 | 0.02 | 10.45 | 0.16 | 0.21 | |
pa1→pa2 | 0.18 | 0.01 | 13.85 | 0.21 | 0.26 |
Model | χ2 | df | RMSEA | SRMR | CFI | TLI | AIC | aBIC |
---|---|---|---|---|---|---|---|---|
Basic model | 7528.05 | 656 | 0.05 | 0.05 | 0.92 | 0.91 | 361321.05 | 361699.27 |
Golembiewski ( | 7430.24 | 654 | 0.05 | 0.04 | 0.92 | 0.91 | 361227.25 | 361611.61 |
Leiter & Maslach ( | 7437.23 | 654 | 0.05 | 0.04 | 0.92 | 0.91 | 361234.24 | 361618.60 |
Lee & Ashforth ( | 7485.55 | 654 | 0.05 | 0.04 | 0.92 | 0.91 | 361282.55 | 361666.92 |
van Dierendonck ( | 7527.66 | 654 | 0.05 | 0.05 | 0.92 | 0.91 | 361324.66 | 361709.03 |
Taris et al. ( | 7436.94 | 653 | 0.05 | 0.04 | 0.92 | 0.91 | 361235.95 | 361623.39 |
Full model | 7417.33 | 650 | 0.05 | 0.04 | 0.92 | 0.91 | 361222.33 | 361619.00 |
Adjusted Model 2 | 7437.25 | 655 | 0.05 | 0.04 | 0.92 | 0.91 | 361232.30 | 361613.50 |
Table 4 Fitting index of each comparison model when dimension is taken as latent variable
Model | χ2 | df | RMSEA | SRMR | CFI | TLI | AIC | aBIC |
---|---|---|---|---|---|---|---|---|
Basic model | 7528.05 | 656 | 0.05 | 0.05 | 0.92 | 0.91 | 361321.05 | 361699.27 |
Golembiewski ( | 7430.24 | 654 | 0.05 | 0.04 | 0.92 | 0.91 | 361227.25 | 361611.61 |
Leiter & Maslach ( | 7437.23 | 654 | 0.05 | 0.04 | 0.92 | 0.91 | 361234.24 | 361618.60 |
Lee & Ashforth ( | 7485.55 | 654 | 0.05 | 0.04 | 0.92 | 0.91 | 361282.55 | 361666.92 |
van Dierendonck ( | 7527.66 | 654 | 0.05 | 0.05 | 0.92 | 0.91 | 361324.66 | 361709.03 |
Taris et al. ( | 7436.94 | 653 | 0.05 | 0.04 | 0.92 | 0.91 | 361235.95 | 361623.39 |
Full model | 7417.33 | 650 | 0.05 | 0.04 | 0.92 | 0.91 | 361222.33 | 361619.00 |
Adjusted Model 2 | 7437.25 | 655 | 0.05 | 0.04 | 0.92 | 0.91 | 361232.30 | 361613.50 |
模型Model | 路径Path | b | SE | t | β | r | 模型Model | 路径Path | b | SE | t | β | r |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Golembiewski ( | ee1→ee2 | 0.44 | 0.01 | 31.29 | 0.50 | 0.55 | Full model | ee1→ee2 | 0.45 | 0.03 | 17.39 | 0.51 | 0.56 |
pa1→ee2 | 0.03 | 0.01 | 2.70 | 0.03 | 0.08 | dp1→ee2 | -0.04 | 0.05 | -0.87 | -0.03 | 0.02 | ||
dp1→dp2 | 0.54 | 0.02 | 23.65 | 0.48 | 0.53 | pa1→ee2 | 0.05 | 0.02 | 3.33 | 0.06 | 0.11 | ||
dp1→pa2 | 0.25 | 0.03 | 9.37 | 0.18 | 0.23 | ee1→dp2 | 0.00 | 0.02 | -0.10 | 0.00 | 0.05 | ||
pa1→pa2 | 0.18 | 0.02 | 12.00 | 0.23 | 0.28 | dp1→dp2 | 0.53 | 0.04 | 12.95 | 0.47 | 0.52 | ||
Leiter & Maslach ( | ee1→ee2 | 0.43 | 0.02 | 28.93 | 0.49 | 0.54 | pa1→dp2 | 0.02 | 0.01 | 1.85 | 0.04 | 0.09 | |
ee1→dp2 | 0.00 | 0.02 | 0.13 | 0.00 | 0.05 | ee1→pa2 | -0.08 | 0.03 | -2.78 | -0.09 | -0.04 | ||
dp1→dp2 | 0.53 | 0.03 | 18.35 | 0.47 | 0.52 | dp1→pa2 | 0.36 | 0.05 | 7.26 | 0.26 | 0.31 | ||
dp1→pa2 | 0.25 | 0.03 | 9.26 | 0.18 | 0.23 | pa1→pa2 | 0.17 | 0.02 | 10.06 | 0.22 | 0.27 | ||
pa1→pa2 | 0.18 | 0.02 | 12.27 | 0.23 | 0.28 | Adjusted Model 2 | ee1→ee2 | 0.43 | 0.01 | 31.00 | 0.49 | 0.54 | |
Taris et al. ( | ee1→ee2 | 0.42 | 0.02 | 17.67 | 0.48 | 0.53 | dp1→dp2 | 0.53 | 0.02 | 23.22 | 0.47 | 0.52 | |
dp1→ee2 | 0.02 | 0.04 | 0.55 | 0.02 | 0.07 | dp1→pa2 | 0.25 | 0.03 | 9.26 | 0.18 | 0.23 | ||
ee1→dp2 | 0.00 | 0.02 | -0.16 | -0.01 | 0.05 | pa1→pa2 | 0.18 | 0.02 | 12.27 | 0.24 | 0.29 | ||
dp1→dp2 | 0.54 | 0.04 | 15.11 | 0.48 | 0.53 | ||||||||
dp1→pa2 | 0.25 | 0.03 | 9.30 | 0.18 | 0.23 | ||||||||
pa1→pa2 | 0.18 | 0.02 | 12.27 | 0.24 | 0.29 |
Table 5 Regression coefficients and effect sizes of five models with dimension as latent variable
模型Model | 路径Path | b | SE | t | β | r | 模型Model | 路径Path | b | SE | t | β | r |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Golembiewski ( | ee1→ee2 | 0.44 | 0.01 | 31.29 | 0.50 | 0.55 | Full model | ee1→ee2 | 0.45 | 0.03 | 17.39 | 0.51 | 0.56 |
pa1→ee2 | 0.03 | 0.01 | 2.70 | 0.03 | 0.08 | dp1→ee2 | -0.04 | 0.05 | -0.87 | -0.03 | 0.02 | ||
dp1→dp2 | 0.54 | 0.02 | 23.65 | 0.48 | 0.53 | pa1→ee2 | 0.05 | 0.02 | 3.33 | 0.06 | 0.11 | ||
dp1→pa2 | 0.25 | 0.03 | 9.37 | 0.18 | 0.23 | ee1→dp2 | 0.00 | 0.02 | -0.10 | 0.00 | 0.05 | ||
pa1→pa2 | 0.18 | 0.02 | 12.00 | 0.23 | 0.28 | dp1→dp2 | 0.53 | 0.04 | 12.95 | 0.47 | 0.52 | ||
Leiter & Maslach ( | ee1→ee2 | 0.43 | 0.02 | 28.93 | 0.49 | 0.54 | pa1→dp2 | 0.02 | 0.01 | 1.85 | 0.04 | 0.09 | |
ee1→dp2 | 0.00 | 0.02 | 0.13 | 0.00 | 0.05 | ee1→pa2 | -0.08 | 0.03 | -2.78 | -0.09 | -0.04 | ||
dp1→dp2 | 0.53 | 0.03 | 18.35 | 0.47 | 0.52 | dp1→pa2 | 0.36 | 0.05 | 7.26 | 0.26 | 0.31 | ||
dp1→pa2 | 0.25 | 0.03 | 9.26 | 0.18 | 0.23 | pa1→pa2 | 0.17 | 0.02 | 10.06 | 0.22 | 0.27 | ||
pa1→pa2 | 0.18 | 0.02 | 12.27 | 0.23 | 0.28 | Adjusted Model 2 | ee1→ee2 | 0.43 | 0.01 | 31.00 | 0.49 | 0.54 | |
Taris et al. ( | ee1→ee2 | 0.42 | 0.02 | 17.67 | 0.48 | 0.53 | dp1→dp2 | 0.53 | 0.02 | 23.22 | 0.47 | 0.52 | |
dp1→ee2 | 0.02 | 0.04 | 0.55 | 0.02 | 0.07 | dp1→pa2 | 0.25 | 0.03 | 9.26 | 0.18 | 0.23 | ||
ee1→dp2 | 0.00 | 0.02 | -0.16 | -0.01 | 0.05 | pa1→pa2 | 0.18 | 0.02 | 12.27 | 0.24 | 0.29 | ||
dp1→dp2 | 0.54 | 0.04 | 15.11 | 0.48 | 0.53 | ||||||||
dp1→pa2 | 0.25 | 0.03 | 9.30 | 0.18 | 0.23 | ||||||||
pa1→pa2 | 0.18 | 0.02 | 12.27 | 0.24 | 0.29 |
[1] |
Bakker, A. B., Schaufeli, W. B., Sixma, H. J., Bosveld, W., & Van Dierendonck, D. (2000). Patient demands, lack of reciprocity, and burnout: A five-year longitudinal study among general practitioners. Journal of Organizational Behavior, 21(4), 425-441.
doi: 10.1002/(SICI)1099-1379(200006)21:4<>1.0.CO;2-# URL |
[2] | Bi, Z. Z., & Huang, X. T. (2005). The role of burnout in the relationship between achievement motivation and turnover intention. Journal of Psychological Science, 28(1), 28-31. |
[3] |
Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9(1), 91-121.
doi: 10.1146/clinpsy.2013.9.issue-1 URL |
[4] | Brenner, J. (2020). Examining the stage progression of employee burnout (Order No. 28148693). Available from ProQuest Dissertations & Theses Global; Publicly Available Content Database. ( 2451849425). |
[5] | Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. |
[6] | Cramer, A. O. J., van Borkulo, C. D., Giltay, E. J., van der Maas, H. L. J., Kendler, K. S., Scheffer, M., & Borsboom, D. (2016). Major depression as a complex dynamic system. PLoS One, 11(12), 1-20. |
[7] |
Cramer, A. O. J., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., ... Borsboom, D. (2012). Dimensions of normal personality as networks in search of equilibrium: You can’t like parties if you don’t like people. European Journal of Personality, 26(4), 414-431.
doi: 10.1002/per.1866 URL |
[8] |
Deboeck, P. R., & Preacher, K. J. (2016). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling, 23(1), 61-75.
doi: 10.1080/10705511.2014.973960 URL |
[9] |
de Vos, J. A., Brouwers, A., Schoot, T., Pat-El, R., Verboon, P., & Näring, G. (2016). Early career burnout among Dutch nurses: A process captured in a Rasch model. Burnout Research, 3(3), 55-62.
doi: 10.1016/j.burn.2016.06.001 URL |
[10] |
Diestel, S., & Schmidt, K.-H. (2010). Direct and interaction effects among the dimensions of the Maslach Burnout Inventory: Results from two German longitudinal samples. International Journal of Stress Management, 17(2), 159-180.
doi: 10.1037/a0018967 URL |
[11] | Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1-18. |
[12] |
Fried, E. I., Epskamp, S., Nesse R. M, Tuerlinckx, F., & Borsboom, D. (2016). What are “good” depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis. Journal of Affective Disorders, 189, 314-320.
doi: 10.1016/j.jad.2015.09.005 pmid: 26458184 |
[13] |
Fried, E. I., van Borkulo, C. D., Cramer, A. O. J., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52(1), 1-10.
doi: 10.1007/s00127-016-1319-z pmid: 27921134 |
[14] |
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33, 1-22.
pmid: 20808728 |
[15] |
Gan, T., & Gan, Y. (2014). Sequential development among dimensions of job burnout and engagement among IT employees. Stress and Health, 30(2), 122-133.
doi: 10.1002/smi.v30.2 URL |
[16] |
Golembiewski, R. T., Munzenrider, R., & Carter, D. (1983). Phases of progressive burnout and their work site covariants: Critical issues in OD research and praxis. The Journal of Applied Behavioral Science, 19(4), 461-481.
doi: 10.1177/002188638301900408 URL |
[17] |
Herman, K. C., Hickmon-Rosa, J., & Reinke, W. M. (2018). Empirically derived profiles of teacher stress, burnout, self-Efficacy, and coping and associated student outcomes. Journal of Positive Behavior Interventions, 20(2), 90-100.
doi: 10.1177/1098300717732066 URL |
[18] | Hou, K. T., Wen, Z. L., & Cheng, Z. J. (2004). Structural equation model and its applications. Beijing: Educational Science Publishing House. |
[19] | Huang, J., Bao, X. H., You, X. Q., & Zhou, L. M. (2010). The mediation effects of personal resources on relationship between the job demand-resource model and job burnout. Journal of Psychological Science, 33(4), 963-965. |
[20] | Huang, J., You, X.Q., Wang, Y. S., & Bao, X. H. (2015). A Longitudinal Analysis of the Developmental Process of Job Burnout. Journal of Psychological Science, 38(4), 911-915. |
[21] |
Huyghebaert, T., Fouquereau, E., Gillet, N., Beltou, N., & Tellier, F. (2018). Effects of workload on teachers’ functioning: A moderated mediation model including sleeping problems and overcommitment. Stress and Health: Journal of the International Society for the Investigation of Stress, 34(5), 601-611.
doi: 10.1002/smi.v34.5 URL |
[22] | Lazarus, R. S. (1966). Psychological stress and the coping process. New York: McGraw-Hill. |
[23] |
Lee, R. T., & Ashforth, B. E. (1993). A longitudinal study of burnout among supervisors and managers: Comparisons between the Leiter and Maslach (1988) and Golembiewski et al. (1986) Models. Organizational Behavior and Human Decision Processes, 54(3), 369-398.
doi: 10.1006/obhd.1993.1016 URL |
[24] |
Leiter, M. P., & Maslach, C. (1988). The impact of interpersonal environment on burnout and organizational commitment. Journal of Organizational Behavior, 9(4), 297-308.
doi: 10.1002/(ISSN)1099-1379 URL |
[25] | Letina, S., Blanken, T. F., Deserno, M. K., & Borsboom, D. (2019). Expanding network analysis tools in psychological networks:Minimal spanning trees, participation coefficients, and motif analysis applied to a network of 26 psychological attributes. Complexity (New York, N.Y.), 2019, 1-27. |
[26] |
Maslach, C. (2003). Job burnout: New directions in research and intervention. Current Directions in Psychological Science, 12(5), 189-192.
doi: 10.1111/1467-8721.01258 URL |
[27] | Maslach, C. & Leiter, M. P. (2017). Understanding burnout: New models. In C. L. Cooper, & J. C. Quick (Eds.), The handbook of stress and health: A guide to research and practice (pp. 36-56, Chapter xxii). Wiley Blackwell. |
[28] | Maslach, C., & Schaufeli, W. B. (1993). Historical and conceptual development of burnout. In W. B. Schaufeli, C. Maslach, & T. Marek (Eds.), Professional burnout: Recent developments in theory and research (pp.1-16). Washington, DC: Taylor & Francis. |
[29] |
McManus, I. C., Winder, B. C., & Gordon, D. (2002). The causal links between stress and burnout in a longitudinal study of UK doctors. The Lancet, 359, 2089-2090.
doi: 10.1016/S0140-6736(02)08915-8 URL |
[30] |
Nguyen, H. T. T., Kitaoka, K., Sukigara, M., & Thai, A. L. (2018). Burnout Study of clinical nurses in Vietnam: Development of job burnout model based on Leiter and Maslach's theory. Asian Nursing Research, 12(1), 42-49.
doi: S1976-1317(17)30279-7 pmid: 29463486 |
[31] | Nieminen, P., Lehtiniemi, H., Vhkangas, K., Huusko, A., & Rautio, A. (2013). Standardised regression coefficient as an effect size index in summarising findings in epidemiological studies. Epidemiology Biostatistics & Public Health, 10(4), 1-15. |
[32] |
Peterson, R. A., & Brown, S. P. (2005). On the use of beta coefficients in meta-analysis. Journal of Applied Psychology, 90(1), 175-181.
pmid: 15641898 |
[33] | Rhemtulla, M., van Bork, R., & Cramer, A. O. J. (2019). Cross-laggedged network models. Multivariate Behavioral Research. Retrived from https://osf.io/r24q6/ |
[34] | Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1-36. |
[35] |
Savicki, V., & Cooley, E. J. (1994). Burnout in child protective service workers: A longitudinal study. Journal of Organizational Behavior, 15(7), 655-666.
doi: 10.1002/(ISSN)1099-1379 URL |
[36] |
Schmittmann, V. D., Cramer, A. O. J., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43-53.
doi: 10.1016/j.newideapsych.2011.02.007 URL |
[37] |
Taris, T. W., Le Blanc, P. M., Schaufeli, W. B., & Schreurs, P. J. (2005). Are there causal relationships between the dimensions of the Maslach Burnout Inventory? A review and two longitudinal tests. Work and Stress, 19(3), 238-255.
doi: 10.1080/02678370500270453 URL |
[38] |
Toppinen-Tanner, S., Kalimo, R., & Mutanen, P. (2002). The process of burnout in white-collar and blue-collar jobs: Eight-year prospective study of exhaustion. Journal of Organizational Behavior, 23(5), 555-570.
doi: 10.1002/(ISSN)1099-1379 URL |
[39] |
van Dierendonck, D., Schaufeli, W. B., & Buunk, B. P. (2001). Toward a process model of burnout: Results from a secondary analysis. European Journal of Work and Organizational Psychology, 10(1), 41-52
doi: 10.1080/13594320042000025 URL |
[40] |
Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17(2), 176-192.
doi: 10.1037/a0027543 pmid: 22486576 |
[41] | Wang, F. (2006). Job burnout in university teachers: The causes and the internal relationship of the three dimensions (Unpublished doctoral dissertation). Beijing Normal University. |
[42] | Wang, F., & Xu, Y. (2004). Job burnout in elementary and high school teachers: Characteristics and relationship with social support. Acta Psychologica Sinica, 36(5), 568-574. |
[43] | Wu, X. C., Qi, Y. J., & Zang, W. W. (2019). Overall features and influencing factors of primary and secondary school teachers’ job burnout in China. Journal of South China Normal University (Social Science Edition), (1), 37-42. |
[44] | Wu, X. C., Zeng, L. J., Qin, X. G., & Zheng, Q. (2003). The current situation and related factors of Chinese teacher’s burnout. Studies of Psychology and Behavior, 1(4), 262-267. |
[45] | Zang, W. W. (2007). The research on the relationship among occupational stress, job burnout and coping style of elementary and high school teachers (Unpublished master’s thesis). Beijing Normal University. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||